Immunology

B cells

B cells are lymphocytes (WBCs) that participate in humoral immunity by producing antibodies in response to antigen stimulation.

activation : B-1 : B-2 : BCRs : CDRs : granzymes : helper T cells : life-span B cells : lymphopoiesis : memory B : naïve B cells : NK cells : NK receptors : NK cells attack viral infected cells : perforin : plasma B : stimulation : surface-immunoglobulins : surface receptors : VDJ recombination

Surface membrane-associated immunoglobulins (IgD and IgM) act as B cell receptors (BCRs), and the enormous variety of antigen recognition sites is attributable to VDJ recombination (alternative splicing) of peptide sequences encoded by V, D, and J genes. The variable region of immunoglobulins includes the recognition sites or complementarity determining regions (CDRs).
Lymphopoiesis, which takes place in the bone marrow of almost all mammals, produces small lymphocytes, large granular lymphocytes (NK) cells, B lymphocytes (precursors of plasma cells, T lymphocytes, and lymphoid dendritic cell. Recognition of self during lymphopoiesis permits anergy (suppression of self-attack).

Naïve B cells each have one of millions of distinct surface antigen-specific receptors, yet have not encountered their specific, cognate antigen. With a life-span of only a few days, many B cells die without ever encountering their cognate antigen. Naïve B cells are activated when the BCR binds to its cognate antigen. This antigen-Ig binding must be coupled with a signal from a helper T cell in order to activate the B cell.

Once activated, B lymphocytes:
● differentiate into one of the B cell types (directly or through intermediate, germinal center reactions)
● plasma cells produce antibodies against the antigenic stimulus, or memory cells are primed for subsequent activation by the antigen

Types of B cell:
B-1
B-2
Plasma B cells
Memory B cells

After newly formed B cells exit generative sites in fetal liver or adult bone marrow they undergo selection events that may involve interactions with self or with external antigens. Selective events can influence the phenotype and functional characteristics of B cells. B cell receptor-mediated events also influence lymphoid organs localization as marginal zone B cells in the spleen, as follicular (B-2 cells), as well as B-1 cells in the peritoneal and pleural cavities. [] fluorescence micrograph spleen, fm high power in which T cells form periarteriolar lymphocyte sheath (PALS) (red) and B-2 cell follicles (green) []

B-1 cells are the first B cells produced in the fetus, and in adults are located primarily in the peritoneal and pleural cavities. B1 cells are believed to operate in the innate response to infection by viruses and bacteria, and usually show preferential responses to T cell-independent antigens. The diversity of B-1 lymphocytes is attributed to their recombinatorial recombination, in which there is a preferential recombination between D-proximal VH gene segments. B-1 lymphocytes express (polyspecific) IgM in greater quantities than they express IgG, and the ability of B1 cells to respond to isotype switch commitment factors such as interleukin-4 may be secondary to their production of IgM. B-1 cells express CD5, which binds to CD72 to mediate B cell-B cell interactions.

B-2 cells are conventional B lymphocytes that are produced postnatally (unlike fetal B-1 cells) and are replaced from the bone marrow.

Plasma B lymphocytes are committed to production of copious amounts of monoclonal antibodies.

Memory B lymphocytes are long-lived, stimulated B lymphocytes that are primed for rapid response to a repeated exposure of the priming antigen. Memory B cells are generated in lymphoid tissue after B cell activation/proliferation and reside in the bone marrow, lymph nodes, and spleen. High affinity surface immunoglobulins enable their activation by lower levels of cognate antigen than are naïve B cells.

NK cells are differentiated from killer T cells. NK, natural killer cells constitute a corps of circulating lymphocytes that are constitutively specialized to attack cancerous cells and virus infected cells. Preprogramming for target recognition, coupled with the absense of need for backup by a clone of identical cells, renders NK cells capable of rapid (innate) response to pathogens. NK attack involves the exocytosis of cytoplasmic granules containing perforin and granzymes. Perforin forms pores in the plasma membrane of attacked cells through which serine-protease granzymes enter, cleaving caspase precursors and triggering apoptosis.

Individuals inherit multiple, polymorphic genes for NK receptors, so the assemblage of NK receptors differs between individuals. NK cells carry two forms of surface receptors:
● killer inhibitory receptors (KIRs) transmit an inhibitory signal when they encounter class I MHC molecules on a cell surface. (By contrast, T cells only recognize antigens that are presented by a MHC molecule.)
● activating receptors, which activate the NK cell upon binding to a target cell

Viral infection often causes suppression of MHC expresion, leading to a reduction of inhibition of NKs by its killer inhibitory receptors. This double negative renders the virus infected cell a target for killing by NK cells.

"About 85% of peripheral B cells are phenotypically mature and display first-order exponential kinetics defined by a half-life of 5-6 weeks, whilst the remainder are short-lived with a life span of several days."[s]

[] tem plasma cell [] micrograph macrophage surrounded by normal plasma cells [] micrograph macrophage & plasma cells []

activation : BCRs : CDRs : helper T cells : life-span B cells : lymphopoiesis : naïve B cells : surface-immunoglobulins : surface receptors : VDJ recombination

Tables  Fc receptors  Immune Cytokines  Immunoglobulins  Cell Adhesion Molecules  Cell signaling  Receptor Tyrosine Kinases (RTKs)  Receptor Signal Transduction  Second Messengers 

Top

tags

Labels: , , , , , ,

| 0 Guide-Glossary

hematopoiesis

Hematopoiesis is the production of blood cells, a developmental process located in the (red) bone marrow, though some cells mature elsewhere. For example, T lymphocytes are so named because they mature in the thymus, and antigenic stimulation of B lymphocytes to become plasma cells typically takes place in the periphery.

B lymphocyte development : common lymphoid progenitor : common myeloid progenitor : E2A : EBF : early B lineage : erythropoiesis : granulopoiesis : hematopoietic growth factors : lymphopoiesis : monocytopoiesis : Pax-5 : pluripotential stem cell : precursors : progenitors : regulatory transcription factors : stages : stem cells : thrombopoiesis : transcriptional regulatory proteins

The process of haematopoiesis occurs in several stages, and is controlled by at least 11 hematopoietic growth factors (including the colony-stimulating factors, IL-2 through IL-7, G-CSF, GM-CSF, and M-CSF). The first stage involves the differentiation of a pluripotential stem cell into a committed progenitor, which is followed by maturation of committed progenitors in distinct pathways, in which precursors are partially developed, 'adolescent' cells en route to maturity.

stem → progenitor → precursor → adult → mature

[] labeled photomicrograph of bone marrow, diagram of adult stem cell plasticity, diagram of stem cell versus progenitor cell

Stem cell stage:
pluripotential hematopoietic stem cell
--------------------

The common myeloid progenitor can generate:

● proerythroblasts (pronormoblasts) → erythropoiesis

● myeloblasts → granulopoiesis

● monoblasts → monocytopoiesis

● megakaryoblasts → thrombopoiesis

The common lympoid progenitor can generate:

● lymphoblasts → lymphopoiesis

۝

Committed progenitor stage to mature cell : granulopoiesis

common myeloid progenitor

myeloblast

B/E/N promyelocyte

------

B/E/N myelocyte

------

B/E/N metamyelocyte

------

B/E/N band

------

basophil, eosinophil, neutrophil

-----------------------

mast cell -----------------------

۝

Committed progenitor stage to mature cell : lymphopoiesis

common lymphoid progenitor

lymphoblast

----------------------------------------↓ rearrangements H: D-J → H: V-DJ

prolymphocyte

-----------------↓ rearrangements L: V-J --------------------------

small lymphocyte------or----- natural killer cell (large granular lymphocyte)

------------↓ IgM→IgD ---------------------------------------------

------B lymphocyte--or-- T lymphocyte

-----------------------------------------------------------------------

--------plasma cell------------------------------------------lymphoid dendritic cell

Development of mature B lymphocytes from multipotent progenitors requires the coordinated activities of a number of transcriptional regulatory proteins, including EBF, Pax-5, and E2A.

During B cell-development from the precursor stage, differentiation involves rearrangement of the heavy chain gene segments. The functional integrity of the rearranged gene is tested: Precursor-B cells express two single domain Ig-like proteins of invariant sequence that substitute for the light chain. Formation of a complex comprising the μ (mu) heavy chain with the surrogate light chains instructs the cell to discontinue rearrangement of the heavy chain locus and to commence rearrangement of the k (kappa) locus. If successful light chain rearrangement is achieved such that the light and heavy chains form a complete antibody, then this complex instructs the cell to discontinue rearrangement of light chains, ensuring that only a single specificity is produced (allelic exclusion). Џ B cell maturation - animation Џ

Those developing B cell clones that fail to generate a productive rearrangement at both one of their heavy chain alleles and a light chain locus will undergo apoptosis. Immune tolerance mechanisms also exist to ensure the death of any newly produced B cells that express an antibody that reacts strongly with self proteins on the surface of host cells.

E2A proteins function in early B lineage development to regulate B lineage-specific gene expression as well as B cell survival. E2A-encoded proteins are involved in the differentiation of a number of cell types, and they are especially important in lymphocyte development.

The E2A gene encodes E47 and E12, which are basic-helix-loop-helix (bHLH) transcription factors that bind DNA either as homodimers or as heterodimers with other bHLH proteins. Such bHLH DNA binding activity in the B-lineage comprises E47 homodimers. Development of thymocytes mainly involves heterodimers of E47 and a related bHLH protein, HEB. Thymocytic E2A protein expression is required to initiate T-cell differentiation. During the development of thymoctyes, E-proteins and their antagonists, Id2 and Id3, regulate T-lineage specific gene expression and TCR rearrangement. E2A and Id proteins block thymocytic maturation in the absence of pre-TCR expression, and pre-TCR signaling acts to promote development in part by inhibiting E2A activity. [l]

۝

Committed progenitor stage to mature cell : monocytopoiesis

common myeloid progenitor

monoblast

promonocyte

monocyte

----

macrophage or myeloid dendritic cell


۝

Committed progenitor stage to mature cell : erythropoiesis

common myeloid progenitor

proerythroblast

basophilic erythroblast

polychromatic erythroblast

polychromatic erythrocyte (reticulocyte)

erythrocyte (RBC)

۝

Committed progenitor stage to mature cell : thrombopoiesis

megakaryoblast
promegakaryocyte
megakaryocyte
thrombocytes (platelets)

Top


tags

Labels: , , , ,

| 0 Guide-Glossary

isotype switching

Isotype switching is a characteristic feature of the humoral immune response, in which a switch from IgM to other Ig isotypes follows first exposure to an antigen. Affinity maturation ensures that repeated exposures to the same antigen will provoke greater antibody ligating affinity of the antibody secreted by successive generations of plasma cells.

Isotype switching is regulated by T cell-produced immune cytokines, such as interleukin-4 (IL-4), interferon-γ (IFN-γ), and TGF-β, which direct B cells to switch to specific Ig classes.

Tables  Fc receptors  Immune Cytokines  Immunoglobulins

Labels: , , , , , ,

| 0 Guide-Glossary

lymphoid system

Components of the lymphoid system are:
● immune cells – B cell lymphocytes and plasma cells, dendritic cells, granulocytes, macrophages, monocytes of mononuclear phagocyte system (MPS), T cell lymphocytes
● lymph ducts and vessels and lymph nodes (right)
[] histopathology []
● lymphoid organs including reticuloendothelial system – bone marrow, (lymph nodes), mucosa-associated lymphoid tissue, Peyer's patches, spleen, thymus, tonsils, vermiform appendix

The reticuloendothelial system or mononuclear phagocytic system comprises a range of cells that are capable of phagocytosis, including macrophages and monocytes. Phagocytosis is an innate immune process, and is not an adaptive immune process. The phagocytic cells either circulate in the blood or are attached to various connective tissues such as pulmonary alveoli, liver sinusoids, skin, spleen, and joints.

The RES functions to provide phagocytic cells for both the inflammatory response and immune responses (primary RES) and to remove pathogens and senescent cells from circulation (secondary RES)

The reticuloendothelial system (RES) includes:
● primary (central) lymphoid production organs – bone marrow, thymus
● secondary (peripheral) lymphoid function organs – circulating monocytes, histiocytes located in many tissues, Kupffer cells of the liver, "Littoral cells" of the spleen, mucosa-associated lymphoid tissue (MALT), which is subdivided into bronchus-associated lymphoid tissue (BALT) and gut-associated lymphoid tissue (GALT), Peyer's patches.

Tables  Fc receptors  Immune Cytokines  Immunoglobulins

o-o index of tissue micrographs [] germinal centers [] fluorescence microscopy dendritic cell uptake of dying cells within spleen [] micrograph red pulp of spleen [] micrograph splenic red pulp [] micrograph spleen cells (mouse) DAPK2 stained [] micrograph white pulp, splenic nodule [] micrograph white pulp infiltrate with Langhans giant cell [] histopathology spleen Gaucher's disease [] micrograph gallery cell surface antigens [] Virtual Histology Main []


Top

Labels: , , , , , , , ,

| 0 Guide-Glossary

plasma cells

Plasma cells are B lymphocytes that have been activated to differentiate and mature by CD4+ helper T lymphocytes. Activated B cells become either memory B cells or plasma cells, which secrete copious amounts of monoclonal antibodies against the original antigen that triggered the antigen presenting cells.

Affinity maturation is a process of affinity-selected differentiation and maturation of activated B cells. Repeated exposures to the same antigen provokes greater antibody ligating affinity in the antibody secreted by successive generations of plasma cells. Isotype switching, in response to signaling by specific cytokines, provides for a switch of production from IgM to other Ig isotypes following first exposure to an antigen. T cell-produced immune cytokines, such as interleukin-4 (IL-4), interferon-γ (IFN-γ), and TGF-β effect isotype switching.

Plasma cells are predominantly located in the bone marrow (0.2% to 2.8% of leukocytes) and are rarely found in the peripheral blood.(description of morphology)

Plasma cells are seen in abnormal numbers in multiple myeloma, plasma cell leukemia, Waldenström's macroglobulinemia, and MGUS (monoclonal gammopathy of uncertain significance).

[] tem plasma cell [] micrograph macrophage surrounded by normal plasma cells [] micrograph macrophage & plasma cells []

Tables  Fc receptors  Immune Cytokines  Immunoglobulins

Labels: , , , , , , , ,

| 0 Guide-Glossary

. . . since 10/06/06
Google