Immunology

activation

Activation of cells of the immune system variably induces proliferation, differentiation, production, and maturation. Some activated cells of the immune system are involved in activation (costimulation) of other cell types. Likewise, some activated cells express molecules involved in activation.

activating agents : B cell activation : costimulatory agents : costimulatory cells : complement activation pathways : dendritic cell activation : granulocyte activation : lymphocyte activation : macrophage alternative : macrophage classical : markers : mediators : monocyte-macrophage : pDC : phagocyte activation : precursor dendritic cells : signaling/receptors : T cell activation : Tc activation : Th activation

Activating agents
_antigen
___pathogens
___pathogen-associated molecular patterns (PAMP)
___danger-associated molecular patterns (DAMP)

Markers
___major histocompatibility complex (MHC) molecules

Costimulatory agents
___CD28
___ ● SLAM (signaling lymphocytic activation molecule), a 70-kDa costimulatory molecule belonging to the Ig superfamily
___ ● ICOS (inducible costimulator) molecules
___ ● TNFR: CD40, CD30, CD27, OX-40, 4-1BB
___ ● negative regulators of costimulation: CTLA-4, PD-1

Costimulatory cells
helper T cells (Th) for activation of B cells, and APCs for activation of T cells
_Antigen presenting cells display epitope proteins – exogenous antigen or fragmented angtigen from phagocytosed cells – on their surfaces. APCs include:
___phagocytic cells – dendritic cells, macrophages
___B cells (B lymphocytes)

Signaling / receptors
_pattern recognition receptors
_____complement receptors (table)
_____Fc receptors (table)
_____scavenger receptors (table)
_____Toll-like receptors (table)
_TNFR
_B cell receptors (BCR)
___immunoglobulin - antibodies (table)
_T cell receptors (TCR)
_____clusters of differentiation
_____major histocompatibility complex (MHC) molecules

Mediators
_immune cytokines (table)

Phagocytes

Dendritic cells
Dendritic cells and their immature counterparts, Langerhans cells (LC), are highly specialized, professional antigen-presenting cells (APC). Immature dendritic cells are called 'veiled cells' because they display large cytoplasmic 'veils' rather than the long dendritic projections of mature cells. As key regulators of immune responses, dendritic cells (DC) stimulate lymphocytes to perform cell-mediated and humoral immune responses against pathogens and tumor cells.

Immature, precursor dendritic cells (pDC) circulate throughout the body, migrating to lymphocyte rich tissues (such as spleen and lymph nodes) upon stimulating encounter with antigen. The dendritic cells internalize the antigen then externalize (fragmented) antigen that they present to lymphocytes in MHC-peptide complexes, expressing markers that stimulate lymphocyte activation.

Monocytemacrophage activation
Production of the macrophage lineage from progenitors in the bone marrow is typically controlled by M-CSF, which is constitutively expressed by many cell types. Serum levels of M-CSF and GM-CSF increase in response to invasive stimuli and inflammation, and monocyte numbers increase dramatically. M-CSF-derived macrophages are larger, and have a higher phagocytic capacity, while GM-CSF-derived macrophages are more cytotoxic against TNF-α-resistant tumour targets, express more MHC class II antigen, and constitutively secrete more PGE-2.

Classically activated macrophages are associated with chronic inflammation and tissue injury wherein classically activated macrophages exhibit a Th1-like phenotype, promoting inflammation, destruction of the extracellular matrix (ECM), and apoptosis. Classical macrophage activation proceeds in two stages.
1. IFN-γ-primed stage in which macrophages exhibit enhanced MHC class II expression, antigen presentation, but reduced proliferative capacity. (IFN-α, IFN-β, IL-3, M-CSF, GM-CSF and TNF-α can also prime macrophages for selected functions.)
2. Secondary stimuli operated to fully activate primed macrophages. Diverse agents provide secondary signals (including LPS (CD14), bacteria, yeast glucans, GM-CSF and phorbol esters). Macrophages stimulated for tumoricidal activity secrete IL-1, display decreased MHC class II gene transcription, and are generally poor antigen presenters of antigen.[r]

Alternatively activated macrophages typically resolve inflammation and facilitate wound healing wherein they display a Th2-like phenotype, promoting construction of ECM, cell proliferation, and angiogenesis. Alternative macrophage activation does not require a priming stage and IL-42 and/or IL-1326 can act as sufficient stimuli.[r2]

Granulocyte activation
The hematopoietic cytokines, granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) have pleiotropic activating effects on mature leukocytes, which can improve leukocyte function, facilitating eradication of microbial infections. G-CSF activates neutrophils, while GM-CSF activates neutrophils, eosinophils, and monocyte/macrophages.

Lymphocytes
B cell activation: naïve B cellsplasma cells
Activation of naïve B cells occurs when a BCR (antibody) encounters and ligates its cognate antigen. B cells are coated in immunoglobulin receptors and are able to recognize intact antigen, which they engulf, digest, and subsequently present in complex with surface MHC class II molecules. The MHC-peptide complex binds CD4 + helper T cells (Th), inducing secretion of cytokines that stimulate B cell proliferation and their differentiation into plasma cells, which secrete specific antibodies that bind with the cognate antigen. These antigen-antibody complexes are subsequently cleared by liver and spleen cells and the classical complement cascade.

T cell activation:
Activation of T cells requires a first signal of TCR engagement, which ensures antigen specificity and MHC restriction of the response. The second signal comprises synergistic costimulatory signaling by professional antigen presenting cells. The costimulatory second signal is necessary to sustain and integrate TCR signaling to stimulate optimal T cell proliferation and differentiation. The level of activation of T cells is closely related to their state of differentiation.

Activation of the resting Tc cell involves two steps: 1) TCR on the CD8+ cell interacts with antigen-class I MHC complex on the surface of a target cell. 2) CD8+ Tc cell is stimulated by cytokines, particularly IL-2, which have been secreted predominantly by activated Th cells. Resting Tc do not express IL-2 receptors until antigen stimulation increases the expression of Tc IL-2 receptors, ensuring that activation is confined to Tc cells that ligate cognate antigen. Activated Tc cells become CTLs.

The first signal for helper T cell (Th) activation is interaction of the TcR-CD3 complex with antigen-MHC class II molecules on the surface of an antigen presenting cell. Stimulation is aided by the CD4 molecule on Th cells, with or without assistance from other accessory molecules, such as CD45, CD28 and CD2. Increased IL-2 secretion by the T cell and an increase in IL-2 receptors on the T cell surface trigger a cascade of biochemical events.



Three pathways are involved in complement activation:
classical pathway (binding of an antibody to its cognate antigen)
alternative pathway (relies upon spontaneous conversion of C3 to C3b)
mannose-binding lectin pathway (MBL -MAPS) (homologous to the classical pathway, but utilizes opsonin, mannan-binding lectin (MBL) and ficolins rather than C1q)

▲ф A activating agents § adaptor protein ~ adhesion molecules ф affinity maturationAID ф anergy ф antibodies ф antigen ф APCsapoptosis ф autoimmunity B : B cell activation ф B cellsbloodbone marrow C סּ caspases ф CDcell-cycle controlcellular fate ф cellular responsecellular signal transductionchemotaxis ф class-switch recombination ф clonal selection ф complement system : complement activation pathways : costimulatory agents : costimulatory cells ~ cytokines ~ cytokine receptors D סּ death receptor : dendritic cell activation ф dendritic cellsdifferentiation E סּ ECM F ♦ Fyn G ф gene conversiongerminal centers : granulocyte activation ф granulocytes H ф helper T cell ф hematopoiesis ф humoral immunity I ф immune cytokines ф immune response ф immune tolerance ~ immunoglobulins § immunoglobulin isotypes ф inflammatory response ф interferons ф isotype switching L ф leukocytes ф leukocyte adhesion cascade : lymphocyte activation ф lymphocyteslymphoid system ф lymphokines ф lymphoid system M : macrophage alternative : macrophage classical ф macrophages ф MHC ф migration ¤ mitogens ф monocytes : markers : mediators : monocyte-macrophage N § NF-κB P ф pathogens ф pattern-recognition receptors : pDC : phagocyte activation ф phagocyte ф plasma cells : precursor dendritic cells ¤ proliferation R ф receptors S ф secondary antibody diversification ф signaling ¤ signaling molecules : signaling/receptorssignal transduction ф somatic hypermutation, somatic mutation ф surface receptors T : T cell activation ф T cells : Tc activation : Th activation ф thymusthymus ф (tolerance) ▲ф


 Complement Receptors  Fc receptors  Immune Cytokines  Immunoglobulins  Interferons  Scavenger Receptors  Toll-like Receptors

Top

tags

Labels: , , , , , , , , , , , , , , ,

| 0 Guide-Glossary

affinity maturation

Affinity maturation is a process of affinity-selected differentiation of activated B cells. Repeated exposures to the same antigen provokes greater antibody ligating affinity in the antibody secreted by successive generations of plasma cells.

The mechanisms by which affinity maturation is achieved are somatic hypermutation and clonal selection. Somatic hypermutation (SHM) is a diversity generating, regulated cellular mechanism through which antibodies are produced against an enormous variety of different potential antigens. The binding affinities of the variable regions of immunoglobulins are altered by AID-enzyme-promoted mutations during antigen-stimulated proliferation of B cells. These somatic hypermutations are transcribed and translated into thousands of slightly different immunoglobulins coded by the hypermutated V regions. The complementarity determining regions of these antibodies possess different affinities for the encountered antigen, and clonal selection will favor cells equipped with highest affinity antibodies because these B cells are favoured in terms of activation and co-operation with T cells.

Clonal selection is the phenomenon whereby a previously unencountered cognate antigen (epitope) can stimulate naïve B lymphocytes to proliferate and differentiate into clones of memory B cells and plasma cells that produce antibodies with the highest affinity for the antigen. Those B cells that have highest affinity BCR against the encountered antigen will be selected for proliferation, antibody production, and committment to an antigen-specific memory lineage.

Thus, SHM prepares a spectrum of antibodies with different affinities for the antigen, while clonal selection ensures that the immune system will react increasingly effectively (highest affinity) to an encountered antigen and will be ready for rapid response to subsequent encounters with the antigen.

Tables  Complement Receptors  Cytokines  Fc receptors  Immune Cytokines  Immunoglobulins  Interferons  Scavenger Receptors  Toll-like Receptors

tags

Labels: , , , , , , , ,

| 0 Guide-Glossary

monocytes

Monocytes are considered to be immature macrophages, and the two types have been considered part of the reticulo-endothelial system (RES) or mononuclear phagocyte system (MPS).

Monocytes play a central role in coordinating immune responses by secreting cytokines and prostaglandins. Cytokines, particularly IL-1, amplify the antigen-induced activation of T cells, whereas released prostaglandins such as PGE2 are potent inhibitors of activation.

Monocytopoiesis takes place in the bone marrow:
stem cell → committed stem cell (common myeloid progenitor) → monoblast → promonocyte → monocyte (bone marrow) → monocyte (peripheral blood) → macrophage or myeloid dendritic cell (tissue).

Monocyte differentiation in the bone marrow requires 1.5 to 3 days. Three glycoprotein growth factors initiate the bone marrow differentiation of macrophages from uni- and bipotential progenitor cells. IL-3 controls the progression from pluripotential stem cell to myeloid-restricted progenitor. IL-3 generates differentiated progeny of all myeloid lineages, and as IL-3-responsive progenitors differentiate, they became responsive to GM-CSF and M-CSF, the two growth factors that determine monocyte/macrophage-restricted progeny. Following commitment to their lineage, monocytes and macrophages remain dependent on these growth factors for continued proliferation and viability. TNF-α, a member of the TNF-receptor superfamily, has also been implicated in growth regulation for macrophage precursors.

Some neutrophilic granules form in the monocyte cytoplasm during development, but these are fewer than those of neutrophil (neutrophilic granulocytes). Circulating monocytes possess migratory, chemotactic, pinocytic, and phagocytic capabilities, in addition to having receptors for IgG Fc-domains (FcR) and iC3b complement. Following migration into tissues, monocytes undergo further differentiation to become multifunctional tissue macrophages.

Tables  Fc receptors  Immune Cytokines  Immunoglobulins

æ Archaea & Eubacteria ¤ Cancer Cell Biology ~ Chemistry of Life  Diagrams & TablesEnzymesEvo Devo Molecular Biology φ Molecules ō Organics ››› Pathways ▫▫ Virus

Labels: , , , , ,

| 0 Guide-Glossary

plasma cells

Plasma cells are B lymphocytes that have been activated to differentiate and mature by CD4+ helper T lymphocytes. Activated B cells become either memory B cells or plasma cells, which secrete copious amounts of monoclonal antibodies against the original antigen that triggered the antigen presenting cells.

Affinity maturation is a process of affinity-selected differentiation and maturation of activated B cells. Repeated exposures to the same antigen provokes greater antibody ligating affinity in the antibody secreted by successive generations of plasma cells. Isotype switching, in response to signaling by specific cytokines, provides for a switch of production from IgM to other Ig isotypes following first exposure to an antigen. T cell-produced immune cytokines, such as interleukin-4 (IL-4), interferon-γ (IFN-γ), and TGF-β effect isotype switching.

Plasma cells are predominantly located in the bone marrow (0.2% to 2.8% of leukocytes) and are rarely found in the peripheral blood.(description of morphology)

Plasma cells are seen in abnormal numbers in multiple myeloma, plasma cell leukemia, Waldenström's macroglobulinemia, and MGUS (monoclonal gammopathy of uncertain significance).

[] tem plasma cell [] micrograph macrophage surrounded by normal plasma cells [] micrograph macrophage & plasma cells []

Tables  Fc receptors  Immune Cytokines  Immunoglobulins

Labels: , , , , , , , ,

| 0 Guide-Glossary

. . . since 10/06/06
Google