Immunology

activation

Activation of cells of the immune system variably induces proliferation, differentiation, production, and maturation. Some activated cells of the immune system are involved in activation (costimulation) of other cell types. Likewise, some activated cells express molecules involved in activation.

activating agents : B cell activation : costimulatory agents : costimulatory cells : complement activation pathways : dendritic cell activation : granulocyte activation : lymphocyte activation : macrophage alternative : macrophage classical : markers : mediators : monocyte-macrophage : pDC : phagocyte activation : precursor dendritic cells : signaling/receptors : T cell activation : Tc activation : Th activation

Activating agents
_antigen
___pathogens
___pathogen-associated molecular patterns (PAMP)
___danger-associated molecular patterns (DAMP)

Markers
___major histocompatibility complex (MHC) molecules

Costimulatory agents
___CD28
___ ● SLAM (signaling lymphocytic activation molecule), a 70-kDa costimulatory molecule belonging to the Ig superfamily
___ ● ICOS (inducible costimulator) molecules
___ ● TNFR: CD40, CD30, CD27, OX-40, 4-1BB
___ ● negative regulators of costimulation: CTLA-4, PD-1

Costimulatory cells
helper T cells (Th) for activation of B cells, and APCs for activation of T cells
_Antigen presenting cells display epitope proteins – exogenous antigen or fragmented angtigen from phagocytosed cells – on their surfaces. APCs include:
___phagocytic cells – dendritic cells, macrophages
___B cells (B lymphocytes)

Signaling / receptors
_pattern recognition receptors
_____complement receptors (table)
_____Fc receptors (table)
_____scavenger receptors (table)
_____Toll-like receptors (table)
_TNFR
_B cell receptors (BCR)
___immunoglobulin - antibodies (table)
_T cell receptors (TCR)
_____clusters of differentiation
_____major histocompatibility complex (MHC) molecules

Mediators
_immune cytokines (table)

Phagocytes

Dendritic cells
Dendritic cells and their immature counterparts, Langerhans cells (LC), are highly specialized, professional antigen-presenting cells (APC). Immature dendritic cells are called 'veiled cells' because they display large cytoplasmic 'veils' rather than the long dendritic projections of mature cells. As key regulators of immune responses, dendritic cells (DC) stimulate lymphocytes to perform cell-mediated and humoral immune responses against pathogens and tumor cells.

Immature, precursor dendritic cells (pDC) circulate throughout the body, migrating to lymphocyte rich tissues (such as spleen and lymph nodes) upon stimulating encounter with antigen. The dendritic cells internalize the antigen then externalize (fragmented) antigen that they present to lymphocytes in MHC-peptide complexes, expressing markers that stimulate lymphocyte activation.

Monocytemacrophage activation
Production of the macrophage lineage from progenitors in the bone marrow is typically controlled by M-CSF, which is constitutively expressed by many cell types. Serum levels of M-CSF and GM-CSF increase in response to invasive stimuli and inflammation, and monocyte numbers increase dramatically. M-CSF-derived macrophages are larger, and have a higher phagocytic capacity, while GM-CSF-derived macrophages are more cytotoxic against TNF-α-resistant tumour targets, express more MHC class II antigen, and constitutively secrete more PGE-2.

Classically activated macrophages are associated with chronic inflammation and tissue injury wherein classically activated macrophages exhibit a Th1-like phenotype, promoting inflammation, destruction of the extracellular matrix (ECM), and apoptosis. Classical macrophage activation proceeds in two stages.
1. IFN-γ-primed stage in which macrophages exhibit enhanced MHC class II expression, antigen presentation, but reduced proliferative capacity. (IFN-α, IFN-β, IL-3, M-CSF, GM-CSF and TNF-α can also prime macrophages for selected functions.)
2. Secondary stimuli operated to fully activate primed macrophages. Diverse agents provide secondary signals (including LPS (CD14), bacteria, yeast glucans, GM-CSF and phorbol esters). Macrophages stimulated for tumoricidal activity secrete IL-1, display decreased MHC class II gene transcription, and are generally poor antigen presenters of antigen.[r]

Alternatively activated macrophages typically resolve inflammation and facilitate wound healing wherein they display a Th2-like phenotype, promoting construction of ECM, cell proliferation, and angiogenesis. Alternative macrophage activation does not require a priming stage and IL-42 and/or IL-1326 can act as sufficient stimuli.[r2]

Granulocyte activation
The hematopoietic cytokines, granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) have pleiotropic activating effects on mature leukocytes, which can improve leukocyte function, facilitating eradication of microbial infections. G-CSF activates neutrophils, while GM-CSF activates neutrophils, eosinophils, and monocyte/macrophages.

Lymphocytes
B cell activation: naïve B cellsplasma cells
Activation of naïve B cells occurs when a BCR (antibody) encounters and ligates its cognate antigen. B cells are coated in immunoglobulin receptors and are able to recognize intact antigen, which they engulf, digest, and subsequently present in complex with surface MHC class II molecules. The MHC-peptide complex binds CD4 + helper T cells (Th), inducing secretion of cytokines that stimulate B cell proliferation and their differentiation into plasma cells, which secrete specific antibodies that bind with the cognate antigen. These antigen-antibody complexes are subsequently cleared by liver and spleen cells and the classical complement cascade.

T cell activation:
Activation of T cells requires a first signal of TCR engagement, which ensures antigen specificity and MHC restriction of the response. The second signal comprises synergistic costimulatory signaling by professional antigen presenting cells. The costimulatory second signal is necessary to sustain and integrate TCR signaling to stimulate optimal T cell proliferation and differentiation. The level of activation of T cells is closely related to their state of differentiation.

Activation of the resting Tc cell involves two steps: 1) TCR on the CD8+ cell interacts with antigen-class I MHC complex on the surface of a target cell. 2) CD8+ Tc cell is stimulated by cytokines, particularly IL-2, which have been secreted predominantly by activated Th cells. Resting Tc do not express IL-2 receptors until antigen stimulation increases the expression of Tc IL-2 receptors, ensuring that activation is confined to Tc cells that ligate cognate antigen. Activated Tc cells become CTLs.

The first signal for helper T cell (Th) activation is interaction of the TcR-CD3 complex with antigen-MHC class II molecules on the surface of an antigen presenting cell. Stimulation is aided by the CD4 molecule on Th cells, with or without assistance from other accessory molecules, such as CD45, CD28 and CD2. Increased IL-2 secretion by the T cell and an increase in IL-2 receptors on the T cell surface trigger a cascade of biochemical events.



Three pathways are involved in complement activation:
classical pathway (binding of an antibody to its cognate antigen)
alternative pathway (relies upon spontaneous conversion of C3 to C3b)
mannose-binding lectin pathway (MBL -MAPS) (homologous to the classical pathway, but utilizes opsonin, mannan-binding lectin (MBL) and ficolins rather than C1q)

▲ф A activating agents § adaptor protein ~ adhesion molecules ф affinity maturationAID ф anergy ф antibodies ф antigen ф APCsapoptosis ф autoimmunity B : B cell activation ф B cellsbloodbone marrow C סּ caspases ф CDcell-cycle controlcellular fate ф cellular responsecellular signal transductionchemotaxis ф class-switch recombination ф clonal selection ф complement system : complement activation pathways : costimulatory agents : costimulatory cells ~ cytokines ~ cytokine receptors D סּ death receptor : dendritic cell activation ф dendritic cellsdifferentiation E סּ ECM F ♦ Fyn G ф gene conversiongerminal centers : granulocyte activation ф granulocytes H ф helper T cell ф hematopoiesis ф humoral immunity I ф immune cytokines ф immune response ф immune tolerance ~ immunoglobulins § immunoglobulin isotypes ф inflammatory response ф interferons ф isotype switching L ф leukocytes ф leukocyte adhesion cascade : lymphocyte activation ф lymphocyteslymphoid system ф lymphokines ф lymphoid system M : macrophage alternative : macrophage classical ф macrophages ф MHC ф migration ¤ mitogens ф monocytes : markers : mediators : monocyte-macrophage N § NF-κB P ф pathogens ф pattern-recognition receptors : pDC : phagocyte activation ф phagocyte ф plasma cells : precursor dendritic cells ¤ proliferation R ф receptors S ф secondary antibody diversification ф signaling ¤ signaling molecules : signaling/receptorssignal transduction ф somatic hypermutation, somatic mutation ф surface receptors T : T cell activation ф T cells : Tc activation : Th activation ф thymusthymus ф (tolerance) ▲ф


 Complement Receptors  Fc receptors  Immune Cytokines  Immunoglobulins  Interferons  Scavenger Receptors  Toll-like Receptors

Top

tags

Labels: , , , , , , , , , , , , , , ,

| 0 Guide-Glossary

receptors

The functionality of cells of the immune system is particularly dependent on signal pathways, and the various lymphoid cell types sport an array of receptors.

antigenic determinant : APC costimulation : BCR: complement receptors : cytokines : epitope : FcR : Ig-Fc : IgG : opsonins : pathogen associated molecular patterns : pattern recognition receptors : phagocyte receptors : respiratory burst complement : respiratory burst Fc : : scavenger receptors : TCR : TLR : Toll-like receptors : VDJ recombination

Phagocytes

Phagocytic cells detect infectious agents that bind to a variety of receptors on the phagocytes cell membranes, including:

Fc receptors (FcR, Ig-Fc) – the constant region (Fc) of IgG on bacterial surfaces can bind to the Fc receptor on phagocytes. Such binding to the Fc receptor requires prior antibody-antigen interaction. The binding of IgG-coated bacteria to phagocytic Fc receptors stimulates both metabolic activity in the phagocytes (respiratory burst) and phagocytic activity. Fc receptors include the clusters of differentiation, CD16 (Fcγ RIII), CD32 (Fcγ RII-A, Fcγ RII-B2, Fcγ RII-B1), and CD64 (Fcγ RI), Fcε RI, and Fcα RI. All FcR are stimulatory except inhibitory Fcγ RII-B1 and B2, which contain immunoreceptor tyrosine based inhibition motifs (ITIMs) in their cytoplasmic tail. Table  Fc receptors

Complement receptors – Phagocytic cells possess a receptor for the C3b complement opsonins, and binding of C3b-coated bacteria to this receptor stimulates enhanced phagocytosis and the respiratory burst. Table  Complement Receptors.

Scavenger receptors bind a variety of polyanions on bacterial surfaces, stimulating phagocytosis of the polyanion-coated bacteria. Macrophage scavenger receptors appear to mediate important, conserved functions, so it was likely pattern-recognition receptors that arose early in the evolution of host-defense mechanisms. Table  Scavenger Receptors

Toll-like receptors are a variety of pattern recognition receptors (PRR) that recognize pathogen associated molecular patterns (PAMP) on infectious agents. Binding of the infectious agents to Toll-like receptors stimulates phagocytosis and the release of inflammatory cytokines (IL-1, TNF-α, IL-6) from the phagocytes. Table  Toll-like Receptors

Tables  Complement Receptors  Fc receptors  Immune Cytokines  Immunoglobulins  Interferons  Scavenger Receptors  Toll-like Receptors .

Lymphocytes

The surfaces of B cells and T cells are coated with thousands of identical copies of different integral membrane receptors (BCRs, TCRs), each capable of binding with a different antigen.

Receptor characteristics
● thousands of copies of integral membrane proteins with unique antigen binding sites
● encoded by genes assembled by VDJ recombination produced without antigen encounter
● the antigen binding site recognizes an antigenic determinant or epitope on the antigen
● binding, by non-covalent forces, is based on complementarity of the surface of the receptor and the surface of the epitope

Binding of receptor to epitope, when accompanied by APC-costimulation, leads to:
stimulation of the B or T cell to leave the G0 phase and enter the cell cycle
● repeated mitosis generates a clone of cells of identical specificity, each coated with an identical antigen receptor.

Cytokine receptors:
Hematopoietin family receptors are dimers or trimers with conserved cysteines in their extracellular domains and a conserved Trp-Ser-X-Trp-Ser sequence. The two subunits are i) cytokine-specific, and ii) signal transducing. Examples are receptors for IL-2 through IL-7 and GM-CSF.
___Colony-stimulating factors (CSFs) are glycoprotein molecules that support growth of hematopoietic colonies. Examples are receptors for interleukin 3 (IL-3), G-CSF, GM-CSF, M-CSF.

Interferon family receptors
Interferons are immune cytokines that are classified, as type I, II, or III, according to the receptors through which they signal. Interferon (INF) family receptors have conserved cysteine residues and include the receptors for IFNα, IFNβ, and IFNγ.

Tumor Necrosis Factor family receptors possess four extracellular domains. Examples are receptors for TNFα, TNFβ (lymphotoxin β, LT), CD40, CD27, CD30, and Fas.

Chemokine family receptors have seven transmembrane helices (serpentine, GRCRs) and interact with G protein. This family includes receptors for IL-8, MIP-1, MCP (monocyte chemoattractant protein), and RANTES (regulated upon activation normal T cell expressed and secreted). Chemokine receptors CCR5 and CXCR4 are used by HIV to preferentially enter either macrophages or T cells.

Tables  Complement Receptors  Fc receptors  Immune Cytokines  Immunoglobulins  Interferons  Cell Adhesion Molecules  Cell signaling  Receptor Tyrosine Kinases (RTKs)  Receptor Signal Transduction  Second Messengers  Scavenger Receptors  Toll-like Receptors 

▲ф ф antibodies ф antigen : antigenic determinant ф APCs : APC costimulation : BCR ф BCR ф B cells ф CD ф cellular response ф clonal selection ф complement system : complement receptors ф complement system ф costimulation : cytokines ~ cytokines ф dendritic cells : epitope : FcR  Fc receptors ф granulocytes ф helper T cell ф hematopoiesis ф humoral immunity : Ig-Fc : IgG  Immune Cytokines  Immunoglobulins □□ Immunology ~ immunoglobulins ф inflammatory response ф immune cytokines ф immune response ф lymphocytes ф lymphoid system ф macrophages ф MHC : opsonins ф pathogens : pathogen associated molecular patterns (PAMP) : pattern recognition receptors (PRR) ф pattern-recognition receptors : phagocyte receptors ф phagocyte ф plasma cells : respiratory burst complement ››› respiratory burst : respiratory burst Fc : scavenger receptors ф signaling ф surface receptors : TCR ф TCR ф T cells : TLR : Toll-like receptors : VDJ recombination ▲ф

Top

Labels: , , , , , , , , , ,

| 0 Guide-Glossary

signaling

In cells of the immune system, signaling leads to activation of cell-type specific immune activities. Ligand interaction with receptors on the surface of cells of the immune system triggers intracellular signal transduction directly or through association with assistant signal transduction molecules (CD3, IgαIgβ, etc.).

Cytokines are secreted by immune cells in response to cellular signaling, and bind to specific membrane receptors, which then signal the cell via second messengers, often tyrosine kinases, to alter cellular activity (gene expression). Interleukins comprise the largest class of cytokines, and are manufactured by one leukocyte to act on other leukocytes as signaling ligands. Cytokines are often produced in cascades.
Cytokine receptors:
Hematopoietin family receptors
___Colony-stimulating factors (CSFs)
Interferon family receptors
Tumor Necrosis Factor family receptors
Chemokine family receptors

Phagocytic cells of the innate immune response employ:
Fc receptors (FcR, Ig-Fc)
Complement receptors
Scavenger receptors
Toll-like receptors
__adaptor proteins with TIR domains

Activation of lymphocytes signaling of the adaptive immune response requires:
lymphocyte receptors, associated with
ITAM-bearing signal transduction molecules, and
CD45
adaptor proteins
second messengers

Immune signaling serves a variety of functions:
Pre-peripheral-antigen binding
_apoptotic deletion of cells bearing receptors against self-peptides
Post-peripheral-antigen binding
_activation of immune and inflammatory response activities
__secretion of immune mediator molecules – acute phase components, antibodies, ingestion, disgestion, externalization, and presentation of fragmented antigen (epitope peptide), complement components, cytokines, eicosanoids (prostaglandins and leukotrienes), kinins
__ ● production of inhibitory molecules, such as IκB that regulate immune activity
__ ● surface expression of cell-type specific markers and receptors
__expression of surface receptors fine-tuned by somatic hypermutation
__activation of clonal expansion by entry into cell cycle and proliferation
__activation of cellular differentiation from precursor to committed cell lines
__activation of cellular maturation from cell line to specialized cells
__cellular survival responses
__chemotaxis, migration, and leukocyte adhesion cascade

Signaling in the innate immune response :

Pattern recognition receptors (PRR) are a class of innate immune response-expressed proteins that respond to pathogen-associated molecular patterns (PAMP) and endogenous stress signals termed danger-associated molecular patterns (DAMP). The evolutionarily more recent adaptive immune response employs diverse surface receptors that display decremental binding affinities for epitope stimuli.

Pattern recognition receptors include:
Membrane-associated PRR
_____ Toll-like receptors (TLR) that sense pathogen-associated or damage-associated molecular patterns. In Drosphila, Toll and immunodeficiency (Imd) receptors may link innate and adaptive immune responses (Fig), responding to bacterial and fungal pathogens and activating NF-κB homologs (Dif, dorsal and Relish), thus driving antimicrobial peptide gene expression.[ffta]
Cytoplasmic PRR
Secreted PRR, including complement receptors

Toll-like receptors (TLRs) appear to be one of the most ancient, conserved components of the immune system, and are the basic signaling receptors of the innate immune system. TLRs are activated by molecules associated with pathogens (PAMPs) or with injured host cells/tissue (DAMPs). Most identified TLR ligands are either conserved microbial products that signal the presence of an infection, or endogenous ligands resulting from other danger conditions. TLRs trigger signals evoking synthesis and secretion of cytokines and activation of host defenses through NF-κB, MAP kinases, and costimulatory molecules.

The TLR family is characterized by the presence of leucine-rich repeats, which mediate ligand binding, and co-receptors with the Toll/interleukin-1 receptor-like domain (TIR), which mediate interaction with intracellular signaling proteins. To avoid excessive inflammatory responses, TLR signalling must be tightly regulated. MAPK phosphatase 1 (MKP1) is a key negative regulator of Toll-like receptor (TLR)-induced inflammation in vivo. Phosphorylation of MAPK p38 — which is associated with the modulation of cytokine production — is considerably increased and prolonged in the absence of MKP1. [MKP1]
Table  Toll-like Receptors

NF-κBs, Nuclear Factor kappa Bs, are ubiquitous transcription factors involved in responses to cellular stressors such as cytokines, bacterial antigens, and viral antigens. Free NF-κB translocates to the nucleus where it binds to specific κB sequences in DNA, initiating transcription of related genes, including those for immunoreceptors, cytokines, and its own inhibitor, IκB. Inhibitor of kappa B (IκB, IkappaBalpha) inactivates NF-κB by sequestering NF-κB dimers within the cytoplasm. Physiological activities mediated by NF-κB include cellular proliferation, and inflammatory, immune, and cellular survival responses.
[] signaling pathways []

Signaling in the adaptive immune response :

Antigens act as ligands for BCR, while epitope peptideMHC complexes act as ligands for TCR. Hematopoietic growth factors stimulate cell division in immune and blood cell lines.

Signal transduction molecules:
Because both BCR and TCR have very short cytoplasmic domains, they must associate with invariant signal transduction molecules in order to generate an intracellular signal (IgαIgβ for BCR, CD3 for TCR). The antigen-specific receptors and signal transduction molecules cluster together in the plasma membrane, and signaling is effected by long ITAM-containing cytoplasmic domains on the signal transduction molecules. ITAMs are immunoreceptor tyrosine-based activation motifs that are phosphorylated by src-family protein tyrosine kinase enzymes (PTK). Protein kinases add phosphate groups to tyrosine (or serine or threonine) residues of other proteins, often those of enzymes. Phosphatases remove the phosphate groups, reversing the effects of protein kinases. Phospholipases such as PLC cleave specific ester bonds in phosphoglycerides or glycerophosphatidates, converting the phospholipids into fatty acids and other lipophilic substances. Phospholipase C-γ cleaves the membrane phospholipid, phosphatidylinositol bisphosphate (PIP2) into the signaling molecules, inositol trisphosphate (IP3) and diacylglycerol (DAG).

Phosphorylation can activate or inactivate enzymes, or can create binding sites that lead to increased concentration of cytoplasmic proteins (and hence their accessibilty for phosphorylation). Activation of lymphocytes also requires CD45 (common leukocyte antigen), which is necessory for receptor-mediated activation of lymphocytes.

Phosphorylated ITAMs can bind to other PTKs (Syk for B cells, ZAP-70 for T cells), triggering a cascade of cytoplasmic enzymes or second messengers, such as calcium ions, diacylglycerol, G-proteins, IP3, MAP kinases, PKCs, and transcription factors, such as NF-κB. Ultimately, gene expression via transcription of mRNA leads to immune activities.

Tables  Apoptosis vs Necrosis  Apoptosis  Cell Adhesion Molecules  Cell signaling  Complement Receptors  Cytokines  Eicosanoid Actions  Fc receptors  Immunoglobulins  Interferons  Receptor Tyrosine Kinases (RTKs)  Receptor Signal Transduction  Second Messengers  Scavenger Receptors  Toll-like Receptors

Labels: , , , , ,

| 0 Guide-Glossary

. . . since 10/06/06
Google